

TWO TAXANE DITERPENES FROM *TAXUS MAIREI*

JING-YU LIAN, ZHI-DA MIN, MIZUO MIZUNO,* TOSHIYUKI TANAKA* and MUNEKAZU IINUMA*

Department of Phytochemistry, China Pharmaceutical University, Nanjing, China, *Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan

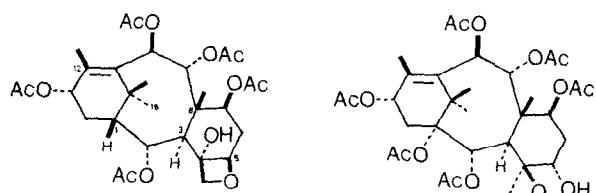
(Received 2 March 1988)

Key Word Index—*Taxus mairei*, Taxaceae, diterpene, 1-hydroxy-4-deacetylbaaccatin IV, 1-acetoxy-5-deacetylbaaccatin I

Abstract—Two new baaccatin type diterpenes were isolated from the stem bark of *Taxus mairei*. Their structures were established as 1-dehydroxy-4-deacetylbaaccatin IV and 1-acetoxy-5-deacetylbaaccatin I on the basis of spectroscopic analysis.

INTRODUCTION

In the previous paper [1, 2], we have reported three new non-taxane type diterpenes from the bark of *Taxus mairei*, taxamairins A, B and C. As the continuation of our chemical investigation on *T. mairei*, we now report the structures of two new baaccatin type diterpenes: 1-dehydroxy-4-deacetylbaaccatin IV (1) and 1-acetoxy-5-deacetylbaaccatin I (2). The present paper deals with the isolation, structure elucidation and identification of the compounds.


RESULTS AND DISCUSSION

An ethanolic extract of the bark of *Taxus mairei* (Lemée et Lével.) S. Y. Hu growing in Fujing province, China was fractionated by column chromatography on silica gel or neutral aluminium oxide. Finally 1 and 2 were purified by recrystallization.

Compound 1, $C_{30}H_{42}O_{12}$ ($M^+ m/z$ 594 266), showed a UV maximum at 220 nm which revealed the absence of the cinnamate group. It was shown in the IR spectrum an absorption at 3461 cm^{-1} relating to a hydroxyl group. The ^1H NMR spectrum exhibited the presence of tertiary methyl groups of taxane type; $\delta 1.20$ (C_{17}), 1.56 (C_{19}), 1.67 (C_{16}) and 1.96 (C_{18}) ppm. In the range of 2.0–2.2 ppm, there were five methyl signals assignable to acetyl groups. The signals at 4.20 ($1\text{H}, d, J=7.4\text{ Hz}$) and 4.53 ($1\text{H}, d, J=7.2\text{ Hz}$) ppm appeared as an AX system indicating a methylene at C-20 of taxane belonging to baaccatin IV type [3]. The configuration of five acetyl groups could be assigned as follows: an AX system, which consisted of 6.03 and 6.16 ($J=12.4\text{ Hz}$) ppm, was attributed to 9β -H and 10α -H ($\theta=180^\circ$). It was resulted in the acetyl groups being 9α and 10β . On the other hand, three signals at 2.46 ($1\text{H}, ddd, J_{14\beta, 14\alpha}=15.2, J_{14\beta, 13\beta}=7.2, J_{14\beta, 1}=1.4\text{ Hz}$), 1.83 ($1\text{H}, ddd, J_{14\alpha, 14\beta}=15.2, J_{14\alpha, 13\beta}=9.0, J_{14\alpha, 1}=1.4\text{ Hz}$) and 6.13 ($1\text{H}, dd, J_{13\beta, 14\alpha}=9.1, J_{13\beta, 14\beta}=7.2\text{ Hz}$) were assignable to the 14β -H, 14α -H and 13β -H, respectively. An acetyl group was shown to be at 13α and a proton to be at C- 1β . Furthermore, a characteristic signal of 3-H of taxane appeared at 3.03 ($d, J=5.5\text{ Hz}$) ppm. Because the dihedral angle between 1β -H and 2β -H was nearly 90° , a peak for 2-H, which only coupled with

3-H, was observed in a doublet at 5.65 ppm. The result suggested an acetyl group at 2β -C. The signal of 5.52 ($1\text{H}, dd, J_{7\alpha, 6\beta}=11.0, J_{7\alpha, 6\alpha}=6.5\text{ Hz}$) ppm being attributed to the $H-7\alpha$ that made clear an acetyl group at the 7β -C. As a matter of course, a hydroxyl was assigned to be at 4α -C. Finally, the structure of 1-dehydroxy-4-acetylbaaccatin I could be proposed for 1.

Compound 2, $C_{32}H_{44}O_4$ (FD and $M^+ m/z$ 652), a UV maximum at 220 nm . It showed a IR absorption at 3569 cm^{-1} which was related to a hydroxyl group. The ^1H NMR spectrum of 2 revealed the presence of four tertiary methyl groups of taxane type, $\delta 1.22$ (17-Me), 1.24 (19-Me), 1.62 (16-Me) and 2.24 (18-Me) ppm. There were signals of six acetyl groups in the range from 2.0 to 2.4 ppm. The signals of 2.25 ($1\text{H}, d, J=5.0\text{ Hz}$) and 3.63 ($1\text{H}, d, J=5.0\text{ Hz}$) ppm appeared as an AX system, indicative of a methylene group of the oxetan ring of baaccatin I type [4]. In the ^1H NMR spectrum of 2, it was shown 9-C , 10-C and 13-C bearing an acetyl group, respectively. Two signals of 2.12 ($1\text{H}, ddd, J_{6\beta, 6\alpha}=15.0, J_{6\beta, 7\alpha}=9.9, J_{6\beta, 5\beta}=4.4\text{ Hz}$) and 1.76 ($1\text{H}, ddd, J_{6\alpha, 6\beta}=15.0, J_{6\alpha, 7\alpha}=4.1, J_{6\alpha, 5\beta}=3.0\text{ Hz}$) ppm were assignable for methylene at 6-C , and a signal of 5.52 ($1\text{H}, dd, J_{7\alpha, 6\beta}=9.9, J_{7\alpha, 6\alpha}=4.0\text{ Hz}$) ppm was also attributable to 7α -H, which showed an acetyl group to be at 7β -C. On the other hand, two signals at 2.52 ($1\text{H}, dd, J_{14\beta, 14\alpha}=15.0, J_{14\beta, 13\beta}=9.7\text{ Hz}, 14\beta\text{-H}$) and 1.96 ($1\text{H}, dd, J_{14\alpha, 14\beta}=15.0, J_{14\alpha, 13\beta}=7.2\text{ Hz}$) ppm suggested two acetyl groups attaching at 13α -C and 1β -C on the basis of the respective coupling constants. The final acetyl group was at the 2-C ,

1

2

supported by their chemical shifts and coupling constant between 3α -H [3.18 (d , $J = 4.4$ Hz)] and 2β -H [5.52 ($J = 4.4$ Hz)]. Della and coworkers reported [5], if the 5α -C position was substituted with an acetyl group, the signal of 5β -H appeared at 5.62 ppm. If the same position was substituted by a hydroxy group, the signal of 5β -H appeared at 4.16 ppm. So, the signal of 4.15 ppm of **2** had to show the presence of a hydroxyl group at 5α -C. The structure of **2**, hence could be written as 1-acetoxy-5-deacetyl**baccatin I**.

EXPERIMENTAL

Plant material Stem barks of *Taxus mairei* were collected in Fujian province, and a voucher was deposited in the Herbarium of China Pharmaceutical University.

Separation and isolation of 1 and 2. According to our previous papers [1, 2], the EtOAc fraction was chromatographed on a neutral alumina by CC, eluted by a portion of a mixed soln of EtOAc in cyclohexane (5:2 and 1:2). Compounds **1** and **2** were obtained after being recrystallized from MeOH, yielding 0.0017 and 0.005%, respectively.

1-Dehydroxy-4-deacetylbaccatin IV (1)**** Colourless crystals, mp 229–230° (EtOH). $[\alpha]_D^{24} = 40$ (acetone; c 0.5), M_r 594.2665 (M^+ , calcd. 594.2777), $C_{30}H_{42}O_{12}$, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ). 219 (3.81). IR ν_{max} (KBr) 3461, 1744, 1721, 1651, 1241, 1226, 1027 cm^{-1} . $^1\text{H NMR}$ (400 MHz, CD_3OD). δ 1.20 (3H, s, 17-Me), 1.56 (3H, s, 19-Me), 1.67 (3H, s, 16-Me), 1.96 (3H, s, 18-Me), 1.83 (1H, *ddd*, $J_{14\alpha, 14\beta} = 15.2$, $J_{14\alpha, 14\beta} = 9.0$, $J_{14\alpha, 1} = 1.4$ Hz, 14 α -H), 2.46 (1H, *ddd*, $J_{14\beta, 14\alpha} = 15.2$, $J_{14\beta, 13\beta} = 7.2$, $J_{14\beta, 1} = 7.2$ Hz, 14 β -H), 1.95 (3H, s, OAc), 2.1 (6H, s, 2 \times OAc), 2.17 (3H, s, OAc), 2.20 (3H, s, OAc), 3.03 (1H, *d*, $J_{3\alpha, 2\beta} = 5.5$ Hz, 3 α -H), 4.20 (1H, *d*, $J = 7.2$ Hz, 20-H), 4.53 (1H, *d*, 20-H), 5.00 (1H, *d*, $J = 10$ Hz, 5 α -H), 5.52 (1H, *dd*, $J_{7\alpha, 6\beta} = 11.0$, $J_{7\alpha, 6\alpha} = 6.5$ Hz, 7-H), 5.56 (1H, *d*, $J_{2\beta, 3\alpha} = 5.5$ Hz, 2 β -H), 6.03 (1H, *d*, $J_{9\beta, 10\alpha} = 12.4$ Hz, 9 β -H), 6.13

(1H, *dd*, $J_{13\beta, 14\alpha} = 9.0$, $J_{14\beta, 13\beta} = 7.2$ Hz, 13- β -H), 6.16 (1H, *d*, $J_{10\alpha, 9\beta} = 12.4$ Hz, 10 α -H). MS m/z (rel int): 594 (M^+ , 6.0), 593 (39.2), 490 (31.2), 472 (39.4), 430 (39.4), 412 (9), 205 (25), 195 (93.7), 149 (100), 105 (62.5), 93 (39.7), 67 (28.1), 55 (40.6)

1-Acetoxy-5-deacetylbaccatin I (2)**** Colourless crystal, mp 240–241° (EtOH). M_r 652, $C_{32}H_{44}O_{14}$. UV $\lambda_{\text{max}}^{\text{MeOH}}$ 220 nm. IR ν_{max} (KBr) 3569, 1742, 1631, 1241 cm^{-1} . $^1\text{H NMR}$ (400 MHz, CD_3OD). δ 1.22 (3H, s, 17-Me), 1.24 (3H, s, 19-Me), 1.62 (3H, s, 16-Me), 2.24 (3H, s, 18-Me), 1.89 (3H, s, OAc), 2.00 (3H, s, OAc), 2.18 (6H, s, 2 \times OAc), 2.22 (3H, s, OAc), 2.24 (3H, s, OAc), 1.76 (1H, *ddd*, $J_{6\alpha, 6\beta} = 15.0$, $J_{6\alpha, 7\alpha} = 4.1$, $J_{6\alpha, 5\beta} = 3.0$ Hz, 6 α -H), 2.12 (1H, *ddd*, $J_{6\beta, 6\alpha} = 15.0$, $J_{6\beta, 7\alpha} = 9.9$, $J_{6\beta, 5\beta} = 4.4$ Hz, 6 β -H), 2.52 (1H, *d*, $J = 5.0$ Hz, 20-H), 3.63 (1H, *d*, $J = 5.0$ Hz, 20-H), 1.96 (1H, *dd*, $J_{14\alpha, 14\beta} = 15.0$, $J_{14\alpha, 13\beta} = 7.2$ Hz, 14 α -H), 2.52 (1H, *dd*, $J_{14\beta, 14\alpha} = 15.0$, $J_{14\beta, 13\beta} = 9.7$ Hz, 14 β -H), 3.18 (1H, *d*, $J_{3\alpha, 2\beta} = 4.4$ Hz, 3 α -H), 4.16 (1H, *dd*, $J_{5\beta, 6\beta} = 4.4$, $J_{5\beta, 6\alpha} = 3.0$ Hz, 5 β -H), 5.50 (1H, *d*, $J_{2\beta, 3\alpha} = 4.4$ Hz, 2 β -H), 5.52 (1H, *dd*, $J_{7\alpha, 6\beta} = 9.9$ Hz, $J_{7\alpha, 6\alpha} = 4.1$ Hz, 7 α -H), 6.09 (1H, *q*, $J_{13\beta, 14\beta} = 9.9$, $J_{13\beta, 14\beta} = 7.2$, 13- β -H), 6.10 (1H, *d*, $J_{9\beta, 10\alpha} = 11.0$ Hz, 9 β -H), 6.22 (1H, *d*, $J_{10\alpha, 9\beta} = 11.0$ Hz, 10 α -H). FDMS m/z (rel int.) 653 ($M + 1$, 32), 652 (M , 60), 595 (7), 593 (100). EIMS m/z (rel int.) 594 (4), 533 (17), 490 (14), 430 (14.2), 352 (8), 310 (8), 195 (95), 253 (100), 93 (40)

REFERENCES

1. Liang, J., Min, Z., Mizuno, M., Tanaka, T. and Iinuma M. (1987) *Chem. Pharm. Bull.* **35**, 1613.
2. Liang, J., Min, Z., Mizuno, M., Tanaka, T. and Iinuma, M. (1988) *Acta Chim. Sinica* **46**, 21.
3. Della, D. P., Marcano, C. de and Halsall, T. G. J. (1975) *Chem. Comm.* 365.
4. Senish, V., Blechert, S., Colin, M., Guenard, D., Picot, F., Potier, P. and Varenne, P. (1984) *J. Nat. Prod.* **47**, 131.
5. Della, D. P., Marcano, C. de and Halsall, T. G. (1969) *Chem. Comm.* 1284